Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) composite biomaterials for bone tissue regeneration: in vitro performance assessed by osteoblast proliferation, osteoclast adhesion and resorption, and macrophage proinflammatory response.

نویسندگان

  • S M Cool
  • B Kenny
  • A Wu
  • V Nurcombe
  • M Trau
  • A I Cassady
  • L Grøndahl
چکیده

The efficacy of composite materials for bone tissue engineering is dependent on the materials' ability to support bone regeneration whilst inducing a minimal inflammatory response. In this study we examined the in vitro osteogenic and inflammatory properties of poly(3-hydroxybutyrate-co-3-valerate) (PHBV) with various calcium phosphate-reinforcing phases: nano-sized hydroxyapatite (HA); submicron-sized calcined hydroxyapatite (cHA); and submicron-sized beta-tricalcium phosphate (beta-TCP), using bioassays of cultured osteoblasts, osteoclasts, and macrophages. Our study showed that the addition of a nano-sized reinforcing phase to PHBV, whilst improving osteogenic properties, also reduces the proinflammatory response. Proinflammatory responses of RAW264.7/ELAM-eGFP macrophages to PHBV were shown to be markedly reduced by the introduction of a reinforcing phase, with HA/PHBV composites having the lowest inflammatory response. Osteoclasts, whilst able to attach to all the materials, failed to form functional actin rings or resorption pits on any of the materials under investigation. Cultures of osteoblasts (MC3T3-E1) readily attached and mineralised on all the materials, with HA/PHBV inducing the highest levels of mineralization. The improved biological performance of HA/PHBV composites when compared with cHA/PHBV and beta-TCP/PHBV composites is most likely a result of the nano-sized reinforcing phase of HA/PHBV and the greater surface presentation of mineral in these composites. Our results provide a new strategy for improving the suitability of PHBV-based materials for bone tissue regeneration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Siliceous mesostructured cellular foams/poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) composite biomaterials for bone regeneration

Osteoinductive and biodegradable composite biomaterials for bone regeneration were prepared by combining poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) with siliceous mesostructured cellular foams (SMC), using the porogen leaching method. Surface hydrophilicity, morphology, and recombinant human bone morphogenetic protein 2 adsorption/release behavior of the SMC/PHBHHx scaffolds were an...

متن کامل

Human iPSC-derived osteoblasts and osteoclasts together promote bone regeneration in 3D biomaterials

Bone substitutes can be designed to replicate physiological structure and function by creating a microenvironment that supports crosstalk between bone and immune cells found in the native tissue, specifically osteoblasts and osteoclasts. Human induced pluripotent stem cells (hiPSC) represent a powerful tool for bone regeneration because they are a source of patient-specific cells that can diffe...

متن کامل

3D Scaffold Designing based on Conductive/Degradable Tetrapolymeric Nanofibers of PHEMA-co-PNIPAAm-co-PCL/PANI for Bone Tissue Engineering

The hydrophilic, conducting, biocompatible and porous scaffolds were designed using poly(2-hydroxy ethyl methacrylate)-co-poly(N-isopropylacrylamide)-co-poly(ε-caprolactone) (P(HEMA-b-NIPAAm-b-CL))/polyaniline (PANI) for the osteoblast applications. To this end, the PHEMA and P(HEMA-b-NIPAAm) were synthesized via reversible addition of fragmentation chain transfer (RAFT) polymerization, and in ...

متن کامل

Comparison of Proliferation and Osteoblast Differentiation of Marrow-Derived Mesenchymal Stem Cells on Nano- and Micro-Hydroxyapatite Contained Composite Scaffolds

Bones constructed by tissue engineering are being considered as valuable materials to be used for regeneration of large defects in natural bone. In an attempt to prepare a new bone construct, in this study, proliferation and bone differentiation of marrow-derived mesenchymal stem cells (MSCs) on our recently developed composite scaffolds of nano-, micro-hydroxyapatite/ poly(l-lactic acid) were ...

متن کامل

Application of Electrospun Nanofibrous PHBV Scaffold in Neural Graft and Regeneration: A Mini-Review

Among the synthetic polymers, poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) microbial polyester is one of the biocompatible and biodegradable copolymers in the nanomedicine scope. PHBV has key points and suitable properties to support cellular adhesion, proliferation and differentiation of nanofibers. Nanofibers are noticeably employed in order to enhance the performance of biomaterials,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical materials research. Part A

دوره 82 3  شماره 

صفحات  -

تاریخ انتشار 2007